Silicon Nanocrystals
نویسندگان
چکیده
Silicon has many advantages over other semiconductor materials: low cost, nontoxicity, practically unlimited availability, and decades of experience in purification, growth and device fabrication. It is used for almost all modern electronic devices. However, the indirect energy gap in bulk crystalline Si makes it unable to emit light efficiently and thus unsuitable for optoelectronic applications. For example, lasers, photodetectors are not constructed from silicon. On the other hand, although silicon is widely used for solar cell fabrication, the efficiency can not exceed the Schockley and Queisser limit in single band gap device, because of its inability to absorb photons with energy less than the band gap and thermalisation of photon energy exceeding the band gap. One approach for tackling this disadvantage is to use tandem cells, which can implement the increasing of the number of band gaps (Conibeer et al., 2006; Cho et al., 2008). Moreover, the band gap in silicon is too small to interact effectively with the visible spectrum. If the gap could be adjusted, silicon would be used for either electronic or optical application. In 1990, it was firstly observed experimentally by Canham (Canham, 1990), that photoluminescence (PL) occurs in the visible range at room temperature in porous silicon (PS). Since then the silicon clusters or silicon quantum dots (Si-QDs) or silicon nanocrystals (Si-NCs) have attracted much of research interest, and many of theoretical models, computations, and experimental results on band structures, PL and other electronic properties have been reported during the last decades (Öğüt et al., 1997; Fang & Ruden, 1997; Wolkin et al., 1999; Wilcoxon et al., 1999; Soni et al., 1999; Vasiliev et al., 2001; Garoufalis & Zdetsis, 2001; Carrier et al., 2002; Nishida, 2004; Biteen et al., 2004; Tanner et al., 2006). The results from these reports show that in lowdimension silicon structures, such as silicon nanocrystals or silicon quantum dots, electronic and optical properties can be quite different from those of silicon bulk counterpart, for instance, free-standing Si-NCs show strong luminescence, the color of which depends on the size of the Si-NCs, and the gap and energy increase when their size is reduced. Therefore, the energy gap can be tuned as a function of the size of quantum dots. We are especially interested in the theoretical study on the band gap and the optical spectrum with respect to the size of the Si-NCs or Si-QDs and surface terminations and reconstructions. The effective mass approximation (EMA) is used by Chu-Wei Jiang and M. Green to calculate the conduction band structure of a three-dimensional silicon quantum dot superlattice with the dots embedded in a matrix of silicon dioxide, silicon nitride, or silicon carbide( Jiang & Green, 2006), and later the EMA is only of partial use in determining the absolute confined energy levels for small Si-NCs, because it has been found a decreasingly
منابع مشابه
Giant Raman gain in silicon nanocrystals
Nanostructured silicon has generated a lot of interest in the past decades as a key material for silicon-based photonics. The low absorption coefficient makes silicon nanocrystals attractive as an active medium in waveguide structures, and their third-order nonlinear optical properties are crucial for the development of next generation nonlinear photonic devices. Here we report the first observ...
متن کاملMagic electron affection in preparation process of silicon nanocrystal
It is very interesting that magic electron affection promotes growth of nanocrystals due to nanoscale characteristics of electronic de Broglie wave which produces resonance to transfer energy to atoms. In our experiment, it was observed that silicon nanocrystals rapidly grow with irradiation of electron beam on amorphous silicon film prepared by pulsed laser deposition (PLD), and silicon nanocr...
متن کاملOrdered array of self-assembled SiC nanocrystals fabricated by selective oxide desorption and nanosphere lithography.
We have developed a novel technique based on the selective desorption of an oxide film in order to grow ordered arrays of silicon carbide nanocrystals on a silicon surface. These nanocrystals form as a byproduct of void nucleation in the oxide during the high-temperature vacuum annealing of silicon, a process which normally produces a random distribution of nanocrystals across the silicon surfa...
متن کاملPower-dependent spectral shift of photoluminescence from ensembles of silicon nanocrystals
: Nanocrystals are widely studied for their tunable optical properties, most importantly increased luminescence efficiency and emission energy. Quantum confinement effects are found for many different types of nanocrystals, and these introduce a relation between the emission wavelength and the size of nanocrystals. When ensembles of nanocrystals with a distribution of sizes are studied, this ca...
متن کاملSize classification of silicon nanocrystals
We report on the synthesis of size-classified silicon nanocrystals by differential mobility classification of a polydisperse ultrafine silicon aerosol. Using the described technique, the average nanocrystal size can be tuned by simply adjusting an electric field. Samples of nonagglomerated silicon nanocrystals have been obtained and size control has been achieved within 15%–20% in the 2–10 nm s...
متن کاملSilicon monoxide--a convenient precursor for large scale synthesis of near infrared emitting monodisperse silicon nanocrystals.
While silicon nanocrystals (ncSi) embedded in silicon dioxide thin films have been intensively studied in physics, the potential of batch synthesis of silicon nanocrystals from the solid-state disproportionation of SiO powder has not drawn much attention in chemistry. Herein we describe some remarkable effects observed in the diffraction, microscopy and spectroscopy of SiO powder upon thermal p...
متن کامل